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Abstract-In this research, an effective torsion constant, J'ff' for a wide-flanged member with
different warping restraint conditions at the ends is developed. In order to derive J'ff' the boundary
conditions for different warping restraint conditions at the ends, as imposed by the use of different
types of connections in steel structures, are employed in the general equation of torsional rotation,
rjJ. This effective torsion constant can be used directly instead of the St Venant torsion constant, J,
in the conventional member stiffness matrix. The use of J'ff will account for the effect of warping
when using the commercial computer programs which employ either a 6 x 6 member stiffness matrix
for grid or a 12 x 12 member stiffness matrix for space frame. A table for factor F, which is the ratio
of J'ff to J, is presented for different member properties and warping restraint conditions for the
easy and rapid torsional analysis of structures composed of wide-flanged members by the matrix
method. The solutions of a sample grid problem using Jell are compared with well-known solutions
to demonstrate its application.
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constants of integration
ends of a member
bimoment
effective distance between springs
warping constant
effective depth of member
modulus of elasticity
deformation of linear spring
a factor. which is the ratio of J,o to J
linear spring resistance
member f1exibilitv matrix
shear modulus .
moment of inertia
St Venant torsion constant
effective torsion constant
linear spring constant
stiffness matrix of a member for torsional loading
length of a member
lateral bending moment of the flange
a constant equal to ..jGJ(ECw

warping spring constant
warping spring constants at ends a. b
dimensionless warping spring constants at ends a, b
torsional moment
St Venant torsion
warping torsion
warping indicator
warping indicator at ends a. b
angle of twist
rate of twist
in-plane rotation of flange
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I,,<TRODLCTION

In steel structures, the grid and space frame may experience significant torsion in the
members due to applied loads and even self weight. Accurate analysis of such systems is
difficult to achieve using available commercial programs because the torsional stiffness
associated with warping restraint at the ends cannot be included in these programs (gen
erally the available programs consider three degrees of freedom at each node for a grid and
six degrees of freedom at each node for a space frame) ; but, if such structures are analyzed
or designed for torsion considering only the effect of St Venant torsion resistance, the
analysis may underestimate the torsion in the members and the design may then be uncon
servative.

When a member with wide-flanged cross-section is subjected to torsional loading, the
member experiences large out-of-plane warping displacements at the ends, If these warping
displacements are fully or partially restrained by some means (elements of connections), a
system of torsion and bimoment is produced. In that case, the applied torsional load is
resisted by two components, the St Venant torsion, T,. and the warping torsion, Tw . Since
the out-of-plane warping displacements are relatively large in steel structures where the
members are made of wide-flanged cross-sections, the effect of warping resistance is sig
nificant. Thus analysis which includes the effect of warping restraint is desired in the
structural grid and space frame.

In early investigations, several researchers assumed that the member ends were either
free to warp or completely prevented from warping. Reilly (1972), for example, assumed
warping is fully restrained and developed an 8 x 8 element stiffness matrix including the
warping effect for the displacement method of analysis for the structural grid. He considered
the warping effect, measured by the rate of twist. d¢/dx, as an additional degree of freedom
at each end of a grid element. In order to include the effect of warping in space frame,
Barsoum and Gallegher (1970) developed a 14 x 14 member stiffness matrix including
warping degree of freedom. In the recent past, Waldron (1985, 1986) derived a member
stifl'ness matrix for thin-walled girders. This member stiffness matrix is derived explicitly
by inverting the appropriate member flexibility matrix and considering the equilibrium of
the member. It is noted that the stiffness matrix for an open, thin-walled section is identical
to one of the matrices developed by Reilly (1972).

In reality. the effect of warping restraint on the torsional stiffness depends upon the
amount of resistance that can be mobilized at the member ends. The warping resistance is
a function of the cross-sectional dimensions. the length of the member and the joint details
at the ends of the member, i.e. the type of connections. Thus, in steel structures, a partial
warping restraint condition may arise at the ends depending upon the joint details. Con
sidering this fact. Yang and McGuire (1984) introduced a procedure for analyzing space
frame with partial warping restraint at the ends. They introduced the elastic warping spring
concept and the term warping indicator to represent the partial warping restraint for each
end of the member. The warping indicator is defined as the ratio of the warping deformation
at the end of a member when that end is partially restrained to the warping deformation at
the same end when it is free to warp. Lsing this concept. Yang and McGuire (1984) applied
a static condensation procedure to one of the available member stiffness matrices including
warping degree of freedom, and thus eliminated the non-continuous warping degrees of
freedom associated with the restrained warping (a non-continuous end is defined as the one
at which the value of warping is not the same as that at the adjoining end of the next
member).

The problem with using the stiffness matrices which include additional degrees of
freedom for warping. is that all the available commercial computer programs for the
analysis of structures employ either a 6 x 6 element stiffness matrix for a grid or a 12 x 12
element stiffness matrix for a space frame. The static condensation procedure can be
employed in the torsional analysis of members including warping, but again the modification
of the ordinary member stiffness matrices including warping is required according to the
degree of partial restraint at the ends of the member.

This research work develops an effective torsion constant, Jeff, for wide-flanged mem
bers which accounts for the effect of warping restraints at the ends resulting from different
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Fig I. Torsional end restraInt conditions. (a) Simple framing: (h) rigid framing connections
[adapted from Salmon and Johnson (1980)].

categories of construction as permitted by AISC. The concept of warping spring stiffness
and warping indicator (Yang and McGuire, 1984) is employed to derive Jeff for partial
warping restraint conditions. This Jeft can be used directly instead of the St Venant torsion
constant, J, in the available commercial programs.

TORSIONAL END RFSTRAI:'\ITS

According to AISC 1.2 and 2.1, three categories of construction are permitted in steel
structures: type I-"rigid frame", i.e. full flexural restraint at joints; type II-"simple",
i,e. negligible flexural restraint at joints ; type III-"semi-rigid framing" which is in-between
type I and type II constructions. Example connections for type I and II constructions are
illustrated in Fig. I. The type I connection shown in Fig. I (b) includes stiffeners to enhance
warping restraint. In the type II connection shown in Fig. I (a), web angles are used to
connect the web of the beam to the flange of the column and the angles are designed to be
as flexible as possible. The lateral bending analogy can be used in describing the torsional
restraint conditions. Figure I(a) shows the flanges at the member ends (type II connection)
to have zero deflection and zero moment which correspond torsionally to ¢ = 0 and
d 2¢/dx2 = O. Figure I(b) shows the analogous situation of zero deflection and zero slope
which correspond torsionally to ¢ = 0 and d¢id\: = 0 (type I connections). Similarly, the
boundary conditions for type III connections are ¢ = 0 and bimoment, B = ECwCd 2¢/dx2).
These boundary conditions are applied to derive lert as given in the following.

EFFECTIVE TORSION CONSTA~T. J,tl

Case I : memher Irith torsiona//r r(qidFaming (type I) connections at both ends
Figure 2(a) shows a wide-flanged member which is free to twist at end b and prevented

from twisting at end a. The out-or-plane displacements at both ends are fully prevented. A



364 M. Z Ahmed and F. E. Weisgerber

(a)

~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~

~ /
Torsionally rigid

(b)

'~I=============lbT=1 ~""''''''''''''''''''''''''''''''''''''''''''''''''''''l
Torsionally Torsionally

simple tigid

(c)

~:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~

~ /
Partially restrained

Fig. 2 Member with different types of end restrall1ts. (a) Torsionally rigid connection at both ends;
(b) torsionally simple connection at end a and torsionally rigid connection at end b; (c) partial

warping restraint at both ends.

torque Tis applied at end b. This applied torque Tis resisted internally by two components,
the St Venant torsion T, and the warping torsion Tv., which results from the restraint of
out-of-plane displacements. The St Venant torsion, warping torsion and bimoment, B, are
related to torsional rotation. r/J, as:

d'r/J
-EC--

v. dx'

Thus the total torsion. T, can be expressed as:

(I)

(2)

(3)

d \1) ,dr/J
-p-~=

dx' dx

in which

GJ

The general solution of eqn (4) is:

T

EC,,'
(4)

(5)
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Applying the following boundary conditions in eqn (6),

¢ = Oatr = 0

d¢
-- = Oat.\ = 0

dx

d¢
-- = Oat \ = Ldx - ,

will give:

and

On solving eqns (7)-(9), the constants of integration can be obtained as

T

GJp

and

T {cosh(pL)-lj
A, = -A 1 =-'. .

- GJ psmh(pL)

365

(6)

(7)

(8)

(9)

(10)

(11)

Substitution of these constants in eqn (6) leads to the following equation for angle of twist,
¢:

T\ T. T(cosh(pL)-lj T{cosh(pL)-I}
¢ = -- - - . smh (px)+--- . -----. cosh (pr)-. . (12)

GJ GJp p smh (pL) p smh (pL)

Assuming the applied torque, T. to be unity at end b. the twist angle becomes:

(13)

and the inversion offhh gives the stiffness coefficient khh as:

(14)

where
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sinh (pL)
----

pL

[cosh (pL) _I) 2
a= = . ~-.__._----

pL sinh (pL)

(15)

(16)

(17)

Thus the stiffness matrix of the member for torsional loading is :

[k] = c;J!fil l
L -I -IJI . (18)

Case II : member with one end a simple connection and the other end a rigidframing connection
The member shown in Fig. 2(b) has the end connections which allow warping at end

a and prevent warping at end b. A torsional load, T, is applied to end b as before. The
boundary conditions for this member are as follows:

¢=Oatx=O

d¢

d
-=Oatx=L.
x

Upon substitution of these boundary conditions for this member and on application
of the same technique as in case I, the stiffness coefficient, k bb , is obtained as:

-1 GJetT (19)k hh = [fhhJ = -L-'

where

Jeff = J(_I_) (20)
I-a,

and

sinh (pL)
(21)a1 = .

pLcosh (pL)

Case III : member with partial warping restraint at both ends
The Jeff for a member with partial warping restraint conditions as shown in Fig. 2(c)

is derived by employing the warping spring concept and the term warping indicator as
described by Yang and McGuire (1984). As mentioned earlier, the term warping indicator
is the ratio of the warping deformation at one end of a member when that end is partially
restrained to the warping deformation at the same end when it is free to warp. This warping
indicator varies from zero when there is no warping to unity when there is no resistance to
warping. For this case, i.e. the member with warping support at the ends (elastic warping
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support or spring is imposed at the end of the member to model the partial warping restraint
conditions as shown in Fig. AI), the bimoment, B, at the end of the member is (Appendix):

d¢
B = sd--'

x
(22)

where S is the warping spring constant. The boundary conditions required to find the
constants of integration of the general equation (6) are:

or

and

or

¢=Oatx=()

d"¢ d¢
B = -ECw---~ = -Set atx = 0

dr dx

d"¢ SCI d¢-- = -_.. -at '( = 0
dx 2 EC, dx .

d"¢ d¢
B = ECw -- = -Sh-atx = L

dx 2 dx

d 2¢ .Ib d¢
-=---'-at,=L

dx" ECw dx' ,

(23)

(24)

(25)

The difference in sign between eqns (24) and (25) is required by the equilibrium ofbimoment
at the right-hand side of the member. Applying these boundary conditions to eqn (6), the
constants of integration are found to be:

and

T S.l sinh (pL) - 'I~j p{ I-cosh (pL)}
.- . . ---- ---- ------

GJ ( SaSb)p(sa + Sb) cosh (pL)+ GJ+ ECw sinh (pL)

(26)

(27)

(28)

Substituting these constants in eqn (6) and on applying the same procedure as described
earlier, Jeff for the member with partial warping restraint condition is obtained as:
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c~h +'~a cosh (pL) +cfasbsinh (pL)
--------

(.fa +Sh) cosh (pL) + (1 +SaSb) sinh (pL)

(29)

(30)

(31 )

In the above expressions, Sa and '~h are the non-dimensional terms as given in the following:

_ Sa
I' =.--~--

" (GJECw ) 12
(32)

(33)

Thus the Jeft for a member with partial warping restraint at the ends depends upon the
non-dimensional terms Sa and Sb which can be calculated by solving the following equations
as derived by Yang and McGuire (1984) :

(34)

and

(35)

It can be noted that the coefficients of eqns (34) and (35) are functions of the warping
indicators, H'a and Wb, which vary from zero as s tends to infinity (no warping at the end)
to unity as s tends to zero (no restraining bimoment).

Thus the torsion constant of a member including the effect of warping is equal to the
St Venant torsion constant, J, times a factor, F. This factor Fcan be determined for different
member properties pL and warping boundary conditions at the member ends. In other
words, the factor F can be determined if the values of the warping indicator W at the ends
of a member and the parameter pL are known. Since the warping indicator is based on the
physical deformation, it can be measured or estimated indirectly by judging the joint details.

In order to facilitate the use of commercial packages, the factor F is calculated for
different member properties pL and warping indicators H'a and H'b' This factor F (Table I)
can be easily employed in the matrix method of structural analysis including the warping
effect when using the available commercial packages.

SAMPLE SOLUTION

A simple grid structure composed of wide-flanged members with various warping
boundary conditions [Fig. 3(a)] is used as a sample problem for the matrix analysis including
the warping effect. This grid is the same as that used by Yang and McGuire (1984). The
STRUDL-II package for the stiffness analysis of the frame structures is employed to analyze
the sample grid. The effective torsion constant, Jeff, is used in the analyses as the requisite
input torsional constant in lieu of simply using J, i.e. the St Venant torsion constant. All
the members of the grid are W 36 x 230 beams (Yang and McGuire, 1984). The lengths of
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the members AB and Be are 60 and 600 in, respectively. The properties are: I: = 15,000
in4

, I, = 940 in4
, J = 28.6 in4

, CI = 282,000 inh (l is moment of inertia). The modulus of
elasticity and rigidity are E = 29,000 ksi and G = 11,200 ksi, respectively. The member
properties, pL = ,j(GJEC )L, are 0.376 and 3.751 for members AB and BC, respectively.
A torsional moment of 100 kip-in is applied at the corner of the grid as shown in Fig. 3(a).
In the first example. this grid is analyzed considering the ends of the members fully restrained
against warping (torsionally rigid, i.e. type I connections and the warping indicators Wa , Wb

and We are zero) and the corresponding Jell are 2512.8 and 57.5 in4 for members AB and
BC, respectively (the factor F is calculated as 87.86 and 2.01 for members AB and BC,
respectively, from Table 1). Results of this analysis. i.e. the torsion and the moments, are
summarized in Fig. 3. The second example considers the same grid but with different
warping boundary conditions. The supports A and C are considered to be torsionally rigid
(type I connections; IIa and H', are zero). The ends of the members AB and BC at the corner
joint B are considered to be partially restrained against warping with a value of warping
indicator W h = 0.5. For comparison, the result of this analysis is shown in Fig. 3 (in
parentheses). It can be noted that distribution of torsion, T, in the members is greatly
dependent upon the warping restraints.

The grid is then analyzed using the St Venant torsion constant, 1. A comparison of
torsion as obtained in Example I using Jell (the warping indicators W a , Wb and We are zero)

Table I. Factor F for different member properties pL and warping indicator It'

pL Il'd = 0.0 11',1 = 0.0 lI'
d
~ 0.0 11'<1 = 0.0 \I',! -- 0.0 \l'd = 0.15 H'

d = 0.25 H'a = 0.25 W,j = 0.25
"', = 0.0 H'h .::::: 0.2." "I. = 050 \1'1) = 0.75 1\'1_, _. 1.0 1\\ = 0.25 11', = 0.50 H'b=0.75 H'b = 1.0

--'•.•._._---

0.1 1101 1 68 7 ,:'1 481.h :nO.6 .11llU .1034 135.0 240 4.0
0.2 301.1 I'.'.' 111.6 93.7 761 784 373 124 3.8., ,
0.3 1345 7811 55.11 41..:1 34.5 36.6 18.9 8.5 3.7
04 76.'2 44 -, :::1.6 14.5 19.9 119 12.1 65 3.5
0.5 491 :!.9 1 108 16.1 ] J.~ 15.0 8.9 54 3.3
0.6 34.5 20 t ) 14.9 11.6 9.) 11.2 7.0 4.6 3.0
0.7 2:'1.7 15x 114 S.9 7 1 89 5.8 4.0 1.8
0.8 19.9 I ~. ~ 91 7 I ).l) 7.3 4.9 3.6 2.6
09 160 102 7 " 59 4 I) 61 43 3.2 2.5
1.0 131 S.6 64 5.1 41 54 3.9 3.0 2.3
1.1 II 1 -.4 5.~ 4..:1 3 7 4.8 3.5 2.7 2.2
1.2 95 fl.' 4.9 3.9 1 1 4.3 3.2 2.6 2.1
13 iU , - 4.4 15 .111 4.0 30 24 2.0
1.4 7.3 :'.1 4.0 ~.~

, ,
1.7 2.8 2.3 1.9

1.5 6.5 4
-, .lh 3.0 ~.~ 3.4 2.7 2.2 1.8

1.6 ).l) 4.1 34 2.8 1.4 3.2 2.5 2.1 1.8
1.7 5.3 4.1) 3 I ~.6 3.0 2.4 2.0 1.7
1.8 4.9 .'.

-,
2.9 2.:'1 2.1 2.8 2.3 1.9 1.7

1.9 4.5 3.4 28 2.~ 2.0 2.7 2.2 1.9 1.6
2.0 41 J.2 2.6 19 2.6 2.1 1.8 1.6
2.1 3.9 1. I 2.:'1 21 19 1.5 20 1.8 1.5
2.2 3.7 2.9 2.4 2.1 1.8 2.4 20 1.7 1.5
2.3 3.5 2.X 2.3 20 I

-,

2.3 1.9 1.7 1.5
24 J.J 1.9 I - , ~ 1.9 1.6 14
2.5 .11 2.::; Il) 1 -, 2.1 1.8 1.6 1.4
2.6 30 2.~ 21 18 I.h 2.1 1.8 1.6 1.4
2.7 2.8 2.4 1.0 1.8 I.h 2.0 1.7 1.5 14
2.8 2 7 2.3 1.0 I

-,

I.' 2.0 1.7 1.5 1.4
2.9 2fl 1.9 I

-,

I. ' 1.9 1.7 1.5 13
3.0 2.5 1.9 I - I.' 1.9 1.6 1.5 13
3.1 24 1.1 1.8 1.6 I.' 1.8 1.6 1.5 13
3.2 24 111 18 1.6 I. .' 1.8 1.6 1.4 13
3.3 ' , 111 18 1.6 1.4 1.8 1.6 14 13_.J

3.4 ~ , I.') I 7 1.6 1.4 1.7 1.5 14 13
3.5 1 , Il) I 7 1.5 1.4 1.7 1.5 1.4 13
3.6 21 It) I 7 J:i 1.4 1.7 1.5 1.4 13
3.7 1.1 1.8 1.6 J:i 1.4 1.6 1.5 1.4 13
3.8 10 I.x 1.6 J:i 14 1.6 1.5 13 1.2
3.9 10 I.~ I.b U 1. 1 1.6 1.5 13 1.2
4.0 1.9 I - \6 14 1 1 \6 14 1.3 1.2

(Continued overleaf)
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Table I-Continued

pL II" = 0.5 II" = 0.5 H'" = 0,5 II" = 0,75 II" = 0,75 II, = 1,0
He = 0.5 Ire = 0,75 H'h = 1.0 Irh = 0,75 H'h = 1.0 H\) = 1.0

--- -~_ .. _----

0,1 20.7 3.9 2,0 2,0 U 1.0
0.2 10,7 36 2.0 2.0 U 1.0
0.3 73 D 1.9 1.9 U 1.0
OA 5.7 30 1.9 1.9 U 1.0
0.5 4.7 2X 1.9 1.8 U 1.0
0.6 4,0 2,6 1.8 1.7 U 1.0
0,7 3,6 2A 1.8 1.7 U 1.0
0,8 3,2 2,3 1.7 1.6 U 1.0
0.9 2,9 22 1.7 1.6 1.2 1.0
1.0 2.7 2.0 1.6 1.5 1.2 1.0
1.1 2,5 2.0 1.6 1.5 1.2 1.0
1.2 2A 1.9 1.5 1.5 1.2 1.0
U 2.3 I.X 1.5 1A 1.2 1.0
lA 2.2 1.8 1.5 1A 1.2 1.0
1.5 2\ 1.7 IA 104 1.2 1.0
1.6 2,0 1.7 IA LA 1.2 1.0
1.7 1.9 1.6 IA U 1.2 1.0
1.8 1.9 1.6 lA U 1.2 1.0
1.9 I.X 1.5 U U 1.1 1.0
2,0 IX 1.5 U U 1.1 1.0
21 I.7 1.5 U U 1.1 1.0, ,

I.7 1.5 U U 1.1 1.0
2.3 1.6 1.4 U U 1.1 1.0
204 1.6 lA U 1.2 1.1 1.0
2.5 1.6 IA 1.2 1.2 1.1 1.0
2,6 1.6 lA 1.2 1.2 1.1 1.0
2.7 1.5 1A 1.2 1.2 1.1 1.0
2.8 1.5 U 1.2 1.2 1.1 1.0
2.9 1.5 L\ 1.2 1.2 1.1 1.0
30 1.5 U 1.2 1.2 1.1 1.0
31 IA U 1.2 1.2 1.1 1.0
32 IA U 12 1.2 1.1 1.0
33 IA U 12 12 1.1 1.0
3.4 lA 13 1.2 1.2 1.1 1.0
3,5 \A 13 1.2 1.2 1.1 1.0
36 lA U 1.2 1.2 1.1 1.0
n IA 1.2 12 1.2 1.1 1.0
38 U 1.2 12 1.1 1.1 1.0
3,9 U 1.2 1.1 1.1 1.1 1.0
4.0 U 1.2 1 1 1.1 1.1 1.0

with those using J only is presented in Fig. 4 (the result using J is shown in parentheses).
It can be observed that the torsion in the members increases significantly (more than 100%)
due to the effect of warping restraints at the joints. Thus the comparison suggests that if
the resistance against warping is large, the effect of warping restraints must be considered
in the analysis.

To determine how the use of Jeff compares with other available analyses, the results as
obtained in the first example using Jeft [bimoment is calculated applying the principle of
flexural analogy; Salmon and Johnson (1980)] are compared with those obtained by using
the member stiffness matrix (8 x 8) including warping degree of freedom as developed by
Reilly (1972). Figure 5 shows that the result obtained using Jeff agrees well with those
obtained using the stiffness matrix including the warping degree of freedom. This com
parison demonstrates that the effect of warping can be incorporated in the matrix analysis
by employing Jeff in the conventional member stiffness matrix. In other words, the available
commercial packages can be employed in determining the actual torsion in the members of
a grid or a space frame if Jeff is used as input data instead of 1. It can also be mentioned
here that although the use of Jefr does not provide bimoment, which is needed to calculate
flange moment, Mr. due to warping torsion, this can be estimated conservatively for design
purposes by applying the technique of flexural analogy (Salmon and Johnson, 1980).
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(6.04)

0.001
(0.0008)

T (kip-in)

(a) (b)

42.89
(46.83)

86.04
(93.95)

(c)

Fig. 3. Sample grid with a concentrated torsional loading. (a) Geometry: (b) torque diagram;
(c) moment diagram.

42.89
(49.76)

(a)

0.001
(0.001)

12.89
(14.96)

(b)

86.04
(99.82)

M (kip-in)

Fig. 4. A comparison of results as obtained using Jeft· with those using J.
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42.89
(43.00)

13.95
(13.74)

0.001
(0.001)

.(a)

T (kip-in)

(b) 86.04
(86.26)

0.15
(0.15)

0.15
413.1 (0.15)

(407.6)

(c)

Fig. 5. A comparison of results as obtained using J'ff with those using member stiffness matrix
induding warping degree of freedom.

CONCLUSIONS

The analysis of the grid and space frame composed of wide-flanged members (steel
structures) is underestimated if they are analyzed by the stiffness method using only the St
Venant torsion constant, J. It is recommended in this research that a solution of these
structures including the effect of warping can be obtained by the stiffness method, using Jeff

instead ofJ in the member stiffness matrix. Since most ofthe available commercial programs
employ either a 6 x 6 member stiffness for grids or a 12 x 12 member stiffness matrix for
the space frame, the use of the effective torsion constant Jeff as derived in this research for
different boundary conditions (member with type I and type II connections) can be easy
and convenient to account for the warping effect when using these commercial packages.
Moreover, this Jeft· can be easily employed for the analysis of structures with partial warping
restraints (type III connections) provided the amount of warping restraint at the ends is
estimated.

Several analyses of a sample structural grid with various warping boundary conditions
are carried out by the stiffness matrix with Jeff and J. From these analyses the following
conclusions can be drawn.

The exact distribution of torsion, T, in the members is dependent upon the warping
boundary conditions, i.e. the degrees of warping restraint at the joints.
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The analysis of steel structures gives conservative results when using the effective
torsion constant, Jeft • instead of the St Venant torsion constant, J, in the conventional
member stiffness matrix.

Excellent agreement is obtained between the results as obtained using Jeff in the
conventional member stiffness matrix with those obtained using the member stiffness matrix
including the warping degree of freedom.
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APPENDIX. WARPING SPRING CONSTANT

As given by Yang and McGuire (1'184). Fig. A I illustrates the warping spring concept schematically. where
linear elastic restraints act on the end of a wide-flanged member The symhols used in the figure are defined as:
k" linear spring constant (kips per inch): d. effective depth ofmemher (inch) 11,. effective distance between springs;
rf/ = (dq,!dx), iI = rate of twist at end a. (radians per Inch): II. In-plane rotation of flange: e. deformation of
linear spring: and F,. linear spring resistance

Point a is the reference point where the twist is taken as zero for the warped configuration of end of a
differential element of length d.1 The stiffness of the warping spring (warping spring constant) can be obtained
from:

(£1 2) di/i £1
11= =

d.1 2 d I

kJ>:d dr/J
\I, ~ FJ\ cC 4 dx' lateral bending moment of flange

(AI)

(A2)

(A3)

(A4)

z

(a) (b)

Fig. A I. Physical model for warping spring. (a) Undeformed conliguration: (b) warped con
figuration [adapted from Yang and McGuire (1984)J.
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I' the \"Irplng spring l'onstant at end a Thus the '\Clrpmg spring stiffness is a function of k" h, and d.
The \alues of k. and h. may be approxlInated indirectly from the judgement of the restraining effects of

particular joint dctails. The warping restraint at a joint may be provided by an external medium such as a column
to which the member IS welded. SometImes. column stifreners are also provided [Fig. I (b)] to achieve sufficient
rigidity at the joint agamst distortion of flanges. In this case. the estimation of k, and h, may be dependent upon
the local deformation of the column flange and column stilfeners present. Alternatively, warping restraint can be
pro\Ided by an mtcrnal medium such as a pair of platc stifl'eners welded to the flanges of the member itself [beam
of Fig I (bilin that easc. k. and h. may be approximated from the distance between the plate stiffeners and their
m-planc shearing and llexural deformation las expected from engineering judgement). In addition to the joint
details. k. and h. may be dependent upon the type of mcmber cross-section itself (Waldron. 1986).


